确定你深入了解勾股定理了?

确定你深入了解勾股定理了?
勾股定理Ⅰ(The Pythagorean Theorem Ⅰ)——改编自Chow pei suan.ching(作者不明,大约公元200年)(adapted from the Chou pei suan..ching (author unknown, circa B.C. 200?))勾股定理Ⅱ(The Pythagorean Theorem Ⅱ)--Bhaskara

勾股定理Ⅰ(The Pythagorean Theorem Ⅰ)

宽客网

——改编自Chow pei suan.ching(作者不明,大约公元200年)

(adapted from the Chou pei suan..ching (author unknown, circa B.C. 200?))

勾股定理Ⅱ(The Pythagorean Theorem Ⅱ)

宽客网

--Bhaskara(12th century)

勾股定理Ⅲ(The Pythagorean Theorem Ⅲ)

宽客网

宽客网

——基于欧几里得的证明(based on Euclid' proof)

勾股定理Ⅳ(The Pythagorean Theorem Ⅳ)

宽客网

宽客网

--H.E. Dudeney(1917)

勾股定理Ⅴ(The Pythagorean Theorem Ⅴ)

宽客网

——詹姆斯·艾伯拉姆·加菲尔德(1876)【美国第20任总统】

  (James A. Garfield)

勾股定理Ⅵ(The Pythagorean Theorem Ⅵ)

宽客网

——Michael Hardy

勾股定理:a·a'=b·b'+c·c'(A Pythagorean Theorem: a·a'=b·b'+c·c' )

宽客网

宽客网

--Enzo R. Gentile

Via:Proofs Without Words :Exercises in Visual Thinking   

Authored by Roger B. Nelsen

超级数学建模对其有节选
金融工程, 数学算法

原文发布于宽客论坛,点击阅读原文